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AN INCIDENCE LOSS MODEL FOR WAVE  ROTORS
WITH AXIALLY ALIGNED PASSAGES

Daniel E. Paxson†

NASA Lewis Research Center
Cleveland, Ohio, USA

Abstract
A simple mathematical model is described to account
for the losses incurred when the flow in the duct (port)
of a wave rotor is not aligned with the passages.  The
model, specifically for wave rotors with axially aligned
passages, describes a loss mechanism which is sensitive
to incident flow angle and Mach number.
Implementation of the model in a one-dimensional CFD
based wave rotor simulation is presented.  Comparisons
with limited experimental results are consistent with the
model.  Sensitivity studies are presented which highlight
the significance of the incidence loss relative to other
loss mechanisms in the wave rotor.

Introduction
Inlet flowfields of nearly any wave rotor typically
contain significant velocity non-uniformities.  This is
true for both on and off-design operation.  The non-
uniformities arise from, among other causes, mis-timed
waves in the passages, and reflected expansion waves of
finite width.  From the reference frame of the rotor
passages, the non-uniformities result in inflow incidence
angles which can be severe, and can in turn result in
large relative total pressure losses.  Despite the large
losses in the relative frame however, incidence can
result in work being done on (or by) the entering flow,
which can affect the overall performance of the
machine.  Thus, accurate predictions of wave rotor
performance  requires adequate accounting of these
effects.  In the case of two and three-dimensional
unsteady CFD calculations they are computed directly.1

For unsteady one-dimensional, and steady two-
dimensional calculations however, they must be
modeled.2-4  Unfortunately, little has been found in the
literature, either theoretical or experimental, to shed
light on an appropriate modeling approach.

This paper presents a model which has been
implemented in a one-dimensional CFD based wave
rotor simulation4.  It applies specifically to wave rotor
configurations in which the passages are aligned with

the axis of rotation (e.g. pressure exchange machines);
however, it could be modified to include more general
configurations.  It produces realistic loss estimates over
a wide range of incidence angles, at low to moderate
incident Mach numbers.  The model and its
implementation are described.  Comparisons are then
made between simulated data and those from the NASA
Lewis 3-port wave rotor experiment5. These include
both limited dynamic pressure traces within a wave
rotor passage in a high incidence region of a wave rotor
flowfield, and averaged port performance data.  The
relative significance of incidence losses are then
compared to other (modeled) loss mechanisms by way
of simulated performance maps with various models
‘turned on’ or ‘off’.  The results will show that
incidence losses can be at least as significant as other
major losses such as those due to finite passage opening
time, leakage, or friction.

Model Description
A schematic diagram of the envisaged flowfield, along
with relevant nomenclature is shown in Fig. 1. It is
shown again in Fig. 2 from the reference frame of a
passage.  Flow entering the passage at incidence forms a
separated region, or vena contracta.  The flow then
reattaches downstream having lost relative total
pressure (momentum) primarily due to the shear stress
at the boundary between recirculating, separated flow
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and that which passes directly through.

To estimate the total pressure loss, several
simplifications are made. First, the flow to the left of
plane t in Fig. 2 and outside the separated region is
assumed isentropic.  Second,  the flow in plane t, but
outside the separated region, as well as the flow in
region 2 is assumed parallel to the passage.  Third, the
static pressure in plane t is constant, and there is no net
velocity in the separated region.  These assumptions
imply that the losses are kinematically equivalent to
those of a backward facing step of height h shown in
Fig. 2.  The gas is also assumed calorically perfect.

The maximum height of the separated region h is
considered a function the incidence angle i.  The
particular choice of this functionality used in the present
model is based upon a low speed (e.g. incompressible)
incidence loss model which may be written as

∆P1-2
0 2 2sin (i)

1

2
w= ρ (1)

where w is the relative velocity in Fig. 2.  This relation,
suggested by Roelke6 arises from the assumption that all
of the kinetic energy in region 1 which is normal to the
passage of region 2 is lost at constant mean static
pressure.

Using Eqn. 1, the assumptions described above, and the
incompressible equations of mass and momentum from
plane t to region 2, the following relationship for h is
obtained

h

b

sin(i)

sin(i)
=

+ cos( )i
(2)

where b is the passage height shown in Fig. 2.  Using
the nomenclature of Fig. 1, this may be rewritten as

h

b

sin( ) - U

sin( ) - U
=

+

V

V V

β

β βcos( )
(3)

Where V is the absolute velocity upstream and U is the
rotor speed.  Of course, since Eqn. 3 is derived from
Eqn. 1 it will yield the same total pressure loss.
Equation 1 has simply been reinterpreted; however, it is
strictly incompressible.  Compressibility effects may be
included by assuming that Eqn. 3 remains valid;
however, the mixing calculation from the throat region,
t to region 2 now becomes a compressible mass
momentum and energy balance, namely

ρ ρt tw
h

b
( )1 2− = w2 (4)

p w
h

b
pt t t+ − = +ρ ρ2

2 21( ) w2 (5)

( )ρ γ γ
γ

ρt t tw
h

b
H p w w( )1 1

1

22 2 2 2
3− − = +

−
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where H
a w

t =
−

+
2 2

1 2γ
, and a is the local speed of

sound. The shear stress at the walls is assumed
negligible and the flow is considered isentropic in
region 1.  Thus, if absolute stagnation conditions, wheel
speed, duct angle β, and static pressure p1 are known in
region 1 of Fig. 2, then Eqns. 3-6 may be used to find
conditions in region 2.

i

W

b

h

t

2
1

h

separated region

Figure 2  Incidence Flow Schematic From Passage
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Figure 3 compares the measured cascade loss
coefficient for a sharp nosed turbine blade7 with that
calculated from the present model at two inlet Mach
numbers.  The actual inlet Mach number of the data is
not known.  The loss coefficient is defined as

K
P

w
= ∆ 0

1
21

2
ρ

(7)

The model shows fairly good agreement with the data at
low incident Mach numbers, which simply means that
Eqn. 1 is a reasonable low speed model. There is
however, a strong incident Mach number dependence
which has been pointed out by Lieblein8 for compressor
cascades, and by Wilson for actual wave rotor flows.5

This is true even if a more appropriate loss coefficient is
used such as

K
P

P p
=

−
∆ 0

1
0

1( )
(8)

Since the modeled flow in region 1 up to the throat is
assumed compressible, it is possible for choking to
occur.  Once choked flow is established Eqn. 5 is
assumed invalid because, in keeping with the backward
facing step analogy, the base pressure is not the same as
the throat pressure.  Equations. 4 and 6 remain correct
however,  with the left hand quantities fixed and known.
This means that all downstream (region 2) flow
quantities are known if a value of p2 is chosen.  This
fact is significant when implementation of the model in
a CFD code is discussed in a later section.

Flat Plate Compressor
Before discussing implementation in a wave rotor
simulation however, it is worth examining the model
predictions applied to a so-called ‘flat plate compressor.
That is, a single compression stage composed of axially
aligned parallel channels and having axially aligned
inlet flow.  It would be expected that, while
performance would be poor, some compression would
be obtained.  Furthermore, performance should be
qualitatively similar to any compression or fan stage,
namely, for a given wheel speed, the pressure ratio
decreases with increasing flow rate.  Figure 4 shows the
absolute stagnation pressure ratio versus normalized

inlet mass flow rate (i.e. 
�

* *

m

a A
i

iρ
) for a normalized

wheel speed,
U

a*
=0.3.  The three curves represent

performance calculated isentropically, with Eqn. 1, and
with the present model, Eqns. 3-6.  The curve
representing the present model follows the expected
trend.  Of course, there are alternate explanations as to
why a pumping characteristic follows the trend shown
in Fig.4.  It is at least encouraging however, that the
incidence model is consistent.

Model Implementation
The incidence model described above was implemented
in a CFD based, one-dimensional wave rotor
simulation.  Details of this simulation have been
presented in the literature and as such, will not be
described here.4, 9-11  The relevant feature for this
discussion is that it numerically integrates the Euler
equations with source terms accounting for viscous,
heat transfer, and leakage effects.  Like most solvers of
this type, specific information is required at the
computational boundaries.  This is often accomplished
by specifying a state for a fictitious ‘image cell’ lying
conceptually just outside of the computing domain.
Incorporating the incidence model into the boundary
conditions is an iterative process which is described
below.  A flow chart description of the process is shown
in Fig. 5.

In a given inlet duct, the total pressure, temperature, and
flow angle are assumed known.  The wheel speed of the
rotor is also assumed known.  An initial guess is made
for the static pressure, p1 at the duct exit.  Since the
flow in the duct is assumed isentropic and parallel to the
walls, everything about the duct flow is known (e.g.
velocity, density, temperature) for this particular static
pressure.
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With the duct flow conditions known, Eqn. 3 may be
used to calculate the vena contracta height, h.  Under
the assumption of isentropic flow from region 1 to the
throat region t of Fig. 2, the left side of Eqns. 4-6 may
then be calculated.  This results in three equation with
three unkowns, p2, ρ2 and w2, thus allowing these
quantities to be obtained.

The assumed separation, turning, and mixing process is
implemented in the image cell of the computing
domain.  Thus, the image cell is assigned the state 2 just
calculated.  Assuming flow from left to right, the first
interior computational cell, denoted henceforth with the
subscript int., is positioned immediately to the right of
the image cell. The current state of the first interior cell
is known.  This state is not, in general, the same as that
in the image cell and thus, a compression or expansion
wave is established between the two cells.  With the
known interior cell gas state, and the known pressure p2,
in the image cell, the velocity across this wave, u* may
be calculated using shock laws or isentropic relations.
This should be the velocity in the image cell.  In other

words, if the initial guess at p1 was correct, then u2=u*.
If u2≠u*, then another guess must be made for p1.

The process is easily accomplished by establishing a
function y(p1)= w*-w2 and using a numerical root
finding technique such as the false point method to find
y=0.  These techniques typically require initial values

which bound the function.  That is values p1
+ and

p1
− which yield positive and negative values of y

respectively.  A good choice for p1
+ is the known

absolute total pressure in the duct.  The value of

p1
− should be that static pressure which yields Mach 1.0

flow in plane t of Fig. 2.  If this value does not yield a
negative value of y, then the flow is assumed choked in
the separated region.

At this point, the left sides of Eqns. 4 and 6 become
fixed.  A guess is made at p2 thus yielding ρ2 and u2.
The value of w* may also be found so that a new
function q(p2)= w*-w2 may be defined and solved for
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the choked condition in precisely the same manner as
y(p1).

Results and Comparison With Experiment
The NASA 3-Port wave rotor experiment5 was used as a
basis for evaluating the present incidence model.  The
reasons for this are twofold.  First, there is a plethora of
data available from the experiment.  Second, the design
was such that large incidence angles at relatively high
relative Mach numbers were observed.  The experiment
was a so-called divider cycle in which flow is brought
on board the rotor at an intermediate pressure and is
split by the gasdynamic waves.  A portion of the flow
exits through one port at a higher pressure than the inlet,
a portion exits through another port at a lower pressure
than the inlet.  The cycle is shown in Fig. 6 as an x-t
diagram.

Several rotor configurations were tested in the
experiment using the same wave cycle.  The results to
be presented here are from the rotor which was 22.9 cm.
long, 30.5 cm. in diameter, having passages 1.0 cm.
high, and a 0.6 cm wide.  The rotor spun at a constant
7400 rpm.  Inlet stagnation pressure and temperature
were maintained at 0.21 MPa. and 322 K, respectively.
The ratio of high pressure port mass flow to inlet mass
flow, ξ was maintained at approximately 0.37.

The geometry of the inlet duct was such that, with
reference to Fig. 6, the lower wall possessed significant
curvature.  The actual geometry is shown in Fig. 7.
Flow angle measurements were made in the plane
shown and curve-fit to create the estimated flow angle

(representing β in Fig. 1) shown in the figure.  Also
shown in Fig. 7 is the computed distribution of
incidence angle for one operating point.

It is noted that in this experiment, like most, other loss
mechanisms were present, and it was not possible to
isolate one from another.  Similarly, the simulation
contains loss models for leakage, friction, and finite
passage opening time among others, and all of these
interact.  It is possible that within the experiment, and
within the simulation, two different loss mechanisms
can manifest the same overall behavior.  The fact that
the NASA experiment was so highly instrumented
however, did help to delineate the various effects.
Nevertheless, Wilson5 concluded that it was not
possible to interpret the experimental results without
including incidence loss

Figure 8 shows the measured and computed
performance of the NASA wave rotor using various
incidence loss models.  For all of the simulation results
to be presented, a numerical cell spacing of ∆x/L=0.02
was used with an associated time step of ∆ta*/L=0.008.
For each operating point the simulation was run until
the total mass flow rate from the exit ports matched that
of the inlet port.  With reference to Fig. 6, the plot
shows the ratio of high to medium total pressure versus
the ratio of low to medium total pressure.

The leakage and finite opening time loss models of the
simulation do not have adjustable parameters; however,
the viscous model (a source term in the momentum
equation) does.  In particular, the momentum equation
of the simulation has the non-dimensional form:
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For each of the incidence models shown in Fig. 8, the
viscous source term coefficient σ was adjusted until the
mass flow ratio ξ=0.37 was obtained subject to the
experimental port boundary conditions corresponding to
the point furthest to the left in the figure (the design
point).  For all other points in the figure, the coefficient
was then fixed.  It is noted that this procedure also had
the effect of closely matching the mass flow through the
wave rotor for all of the incidence models examined.
An exception to this procedure was made for the line
labeled ‘no incidence model’.  This calculation was
obtained by assuming flow entirely in the relative
reference frame, and always aligned with the passage.
For exit ports, which utilize static pressure to specify
boundary conditions, nothing is changed by this
assumption.  For inflow ports, which utilize stagnation
conditions at the boundaries, relative values were
estimated from the measured absolute conditions, rotor
speed, mass flow rate, and duct angle at the high mass
flow rate operating point (far left of Fig. 8).

It is clear from Fig. 8 that (assuming other aspects of the
simulation are correct) some form of incidence model
is needed in order to accurately predict the wave rotor
performance.  The simulation results with no incidence
model are not only incorrect in magnitude, but in trend,
which is arguably much more important.

The line indicated as ideal in the figure was generated
by assuming a loss free turning of the incident flow.
This is obviously not physically correct as shown by the
large performance enhancement toward the right of the
plot; however, it serves the purpose of bounding the

limit of incidence effect for this particular experiment.

The predicted performance using Eqn. 1 and the present
model appear to predict very similar performance.  It
should be noted however, that the calculations using
Eqn. 1 required a viscous source term coefficient 1.59
times that used for the present model in order to match
ξ at the experimental boundary conditions.  In other
words, the viscous losses were increased to compensate
for the reduced incidence losses.  The same
compensation was required with the ‘ideal’ incidence
model.  Here however, the viscous source term
coefficient was 1.78 times that used in the present
model

The consequences of this compensation are large when
the simulation is extended to predict the performance of
other wave rotor cycles.  Using the Eqn. 1 incidence
model, results from the NASA 3-Port Experiment, and a
procedure outlined in Ref. 11, a scaling law for the
viscous source term coefficient may be obtained which
can be used to predict the performance of other wave
rotor geometries and cycles.  When this was done, it
was found that a four-port wave rotor used as a topping
cycle on a small helicopter engine drops in design point
performance from an overall pressure ratio of 1.20 to
1.16.  This result underscores the large; albeit indirect
influence of incidence loss models on performance
predictions of wave rotor cycles of interest.
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Figure 9 shows circumferential distributions of
computed and measured static pressure in the inlet
region, at x/L=0.025, for the operating point
corresponding to the far left of the curves in Fig. 8,
using the same incidence models as those of Fig. 8.  Of
particular interest is the lower third of the figure.  In this
region, the present model predicted a choked flow
situation with the accompanying large losses.  The
shape of the curve using the present model matches the
data to a reasonable degree, which cannot be said for
any of the other incidence models.  This observation
may lend credence to the present incidence modeling
approach.  It should be kept in mind however, that there
are numerous other explanations for the shape of the
pressure profile in Fig. 9, not the least of which are two
and three-dimensional effects not resolved by the
simulation.  Furthermore, the region shown as choked in
Fig. 9 temporally represents only about 70% of the time
required for a wave to travel down the passage.  It is not
clear that steady state incidence models, as described
here, are even appropriate.  Nevertheless, the agreement
is encouraging.

The computed distribution of incident Mach number in
the inlet is shown in Fig. 10 for two different operating
points.  The solid line corresponds to the high mass
flow rate design point (far left of Fig. 8), while the
dashed line corresponds to a low mass flow operating
point (far right of Fig. 8).  The portion of the low flow
curve showing zero relative Mach number densotes a
region of computed outflow in the inlet port.  The
purpose of the figure is simply to indicate the incident

Mach number range to which passages are exposed in
this experiment.

Comparison of Loss Mechanisms
Although not presented in this paper, the simulation
used in this investigation contains models for other loss
mechanisms associated with wave rotors.  These include
losses due to leakage from passage ends to and from the
casing, viscosity (e.g. wall shear stress), finite passage
opening time, mixing of non-uniform port velocity
profiles, and heat transfer.  It is worthwhile to examine
the losses (or effects) due to incidence in comparison to
the others.  For the experimental results presented, the
losses due to heat transfer and finite passage opening
time are considered negligible. Figure 11 shows the
same performance curve as that shown in Fig. 8 with the
various loss mechanisms ‘turned on’ or ‘off’. Non-
uniform velocity profile mixing loss calculations were
included for all of the computational results.

It can be seen that viscous and leakage losses
predominate over most of the performance curve.  In
the low mass flow region however (to the right of the
figure, far from the design point) the effect of incidence
is relatively large and actually shows an improvement in
performance.  This is likely because, although the
incidence is large, the ‘flat plate compressor’ effect is
still doing useful work on the flow.  This is also true at
operating points in the left of the figure, however, at
these points, the inlet flow on which the work is done
exits through the low pressure port.  In the low flow
right hand region of the figure the inlet flow on which
the work is done exits through the high pressure port.
These flow paths are illustrated with dashed lines on the
x-t diagrams shown in Fig. 12.
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Conclusions
A simple incidence loss model for wave rotors with
axially aligned passages has been presented.  The model
shows losses which depend on both incident Mach
number and flow angle.  When implemented in a one-
dimensional CFD wave rotor simulation, the model
predictions are consistent with experimental
measurements made on a 3-port Divider Cycle rig.  This
includes favorable comparison with overall
performance data and on-board static pressure
measurements in a high incidence inflow region.  It has
also been shown that several other modeling approaches
fall short when compared to experimental data.
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